Model of the *SNZ* **Nucleophilic Substitution at the Si Atom: X-Ray Structural Study of N-(Halogenodimethylsilylmethyl) Lactams**

A. A. Macharashvili,a V. E. Shklover,a Yu. T. Struchkov,a G. 1. Oleneva,b E. P. Kramarova,b A. G. Shipov,b and Yu. I. Baukovb

^a*Nesmeyanov Institute of Organoelement Compounds, U.S.S. R. Academy of Sciences, 28 Vavilov St., Moscow 5-334, U. S. S. R.*

b *Pirogov Moscow State Medical Institute, 1 Ostrovityanova St., Moscow 5-437, U.S.S. R.*

X-ray studies show that Si-O and Si-X (X = I, Br, CI, F) distances at the pentaco-ordinated Si atom in N-(halogenodimethylsilylmethyl)lactams vary over a wide range **[1.749(2)-2.461(8)** and **3.734(1)-I .630(7) A,** respectively] in the series $X = I \rightarrow Br \rightarrow Cl \rightarrow F$; hence these compounds can be regarded as models of intermediate stages of S_N 2 substitution at the tetrahedral Si atom.

nucleophilic substitution on the basis of X-ray data for complexes with the intermediate (tetrahedral vs. trigonalapproach was applied to organosilicon compounds, *viz.*

Here we report some novel features of the **Si** atom hypervalent Si-0 bond.

Burgi¹ was the first to map the reaction pathway of the S_N^2 pentaco-ordination in the derivatives of N-(halogeno-nucleophilic substitution on the basis of X-ray data for dimethylsilylmethyl)lactams, recently prepared [Figure 1, compounds (1), (2), (4)-(8); (3) was prepared and structurally characterised earlier by Onan *et al.*⁴]. The bipyramidal) co-ordination. Later this 'structural correlation' structurally characterised earlier by Onan *et 01.41.* The derivatives of the pentaco-ordinated Si atom.² Si atom in the five-membered heterocycle closed by the

A sharp change in the electroconductivity of $CH₂Cl₂$ solutions of these compounds (decrease by a factor of 100 in the series $X = I \rightarrow Br \rightarrow Cl \rightarrow F$) has lead to the assumption of the change in the nature of the Si-X interaction from essentially ionic in **(1)** to covalent in **(S),** with an accompanying weakening of the Si-0 interaction. The i.r. spectra show that on going from iodide to fluoride, the weakening of Si-0 interaction **is** accompanied by weakening and strengthening of the C \rightarrow N and C \rightarrow O bonds, respectively. We have also found that the **N-(halogenodimethylsilylmethyl)lactams** exhibit a remarkably high tendency to exchange halogen substituents at the Si atom⁵ and a high silylating ability towards carbonyl compounds resulting in formation of 0-silylsubstituted enols.6

We carried out X-ray crystallographic analyses of (1) , (2) , and **(4)–(8)**,[†] compounds with different halogen substituents

 \uparrow Crystal data for (1): $C_8H_{16}NOSi$, *M = 296.9*, orthorhombic, space group $Pna2_1$, $a = 12.633(5)$, $b = 8.189(3)$, $c = 10.874(5)$ Å, $U =$ 1124.9(9) \AA^3 , $Z = 4$, $D_c = 1.76$ g cm⁻³; $R = 0.018$ and $R_w = 0.027$ for 1665 unique reflections with $I \ge 2\sigma(I)$.

For (2): $C_8H_{16}BrNOSi\cdot \frac{1}{2}C_6H_6$, $M = 288.9$, monoclinic, space group *C2, a* = 18.466(9), *b* = 7.247(3), *c* = 10.202(5) Å, β = 91.05(4)°, *U* = 1365.0(1) Å³, $Z = 4$, $D_c = 1.414$ g cm⁻³; $R = 0.079$ and $R_w = 0.042$ for 1772 unique reflections with $I \ge 2\sigma(I)$.

For (4): $C_8H_{16}CINOSi$, $M = 205.5$, orthorhombic, space group $P2_12_12_1$, $a = 9.396(3)$, $b = 9.500(3)$, $c = 11.853(5)$ Å, $U = 1057.9(7)$ \AA^3 , $Z = 4$, $D_c = 1.292$ g cm⁻³; $R = 0.027$ and $R_w = 0.025$ for 1608 unique reflections with $\bar{I} \geq 2\sigma(I)$.

For (5): $C_9H_{18}CINOSi$, $M = 219.5$, triclinic, space group $P\overline{1}$, $a =$ 6.194(1), $b = 8.770(2)$, $c = 11.329(3)$ Å, $\alpha = 69.23(2)$, $\beta = 87.59(2)$, γ $= 87.64(2)$ °, $U = 574.7(2)$ Å³, $Z = 2$, $D_c = 1.270$ g cm⁻³; $R = 0.052$ and $R_w = 0.046$ for 2909 unique reflections with $I \ge 2\sigma(I)$.

For (6) : C₁₃H₁₈CINO₂Si, $\dot{M} = 283.5$, triclinic, space group \dot{PI} , $a =$ 7.586(3), $b = 8.701(3)$, $c = 22.460(9)$ Å, $\alpha = 90.48(3)$, $\beta = 90.48(3)$, γ $= 95.43(3)$ °, $U = 1475.7(9)$ Å³, $Z = 4$, $D_c = 1.283$ g cm⁻³, two independent molecules; $R = 0.060$ and $R_w = 0.065$ for 4778 unique reflections with $I \ge 2\sigma(I)$.

For (7): $C_9H_{16}CINO_2Si$, $M = 233.5$, monoclinic, space group $P2_1/n$, $a = 11.432(6), b = 6.443(3), c = 18.156(8)$ Å, $\beta = 107.66(3)$ °, $U =$ 1274.3(5) \AA^3 , $Z = 4$, $D_c = 1.229$ g cm⁻³; $R = 0.069$ and $R_w = 0.053$ for 1884 unique reflections with $I \ge 2\sigma(I)$.

For (8): C_7H_{14} FNOSi, $M = 175.0$, triclinic, space group $P\overline{1}$, $a =$ 9.48(1), $\dot{b} = 12.15(6)$, $c = 16.48(3)$ Å, $\alpha = 100.2(1)$, $\beta = 95.3(1)$, $\gamma =$ 90.3(1)^o, $U = 1860(5)$ Å³, $Z = 8$, $D_c = 1.25$ g cm⁻³, four independent molecules; $R = 0.077$ and $R_w = 0.066$ for 2257 unique reflections with $I \geqslant 2\sigma(I)$

The analyses of (1) , (2) , and (4) — (8) were carried out with a Syntex $P2_1$ automated diffractometer at 153 K (Mo- K_α radiation, θ -20 scan, θ_{max} 30.5°). The structures were solved by the direct method and refined by block-diagonal least-squares in anisotropic (isotropic for H atoms located in the difference Fourier maps) approximation. For **(1)** and **(2)** absorption corrections according to DIFABS technique7 were applied. All calculations were performed with an Eclipse S/200 computer using INEXTL programmes.8

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

Figure 1. Structures of compounds (1) -(8) showing axial Si-O and Si-X bond distances (A) . See Table 1 for deviations (A) from the corresponding standard bond lengths for a tetrahedral Si atom, displacements (h_{Si}) of the Si atom from the C_3 equatorial plane towards the axial \tilde{O} atom, the Si-O and Si-X bond orders n_{Si-O} and n_{Si-X} .

at the Si atom and lactam cycles differing in size and composition.

This series of compounds can be regarded as a model of the whole route of the S_N2 reaction at the Si atom. Indeed, the axial Si-O distances vary from $1.749(2)$ Å in the iodide (1) , comparable to the covalent bond length (1.68 Å) ,⁹ to 2.395(8) **8,** in the fluoride **(8),** while the **Si-X** distances vary from 3.734(1) \AA in (1), close to the Van-der-Waals contact, to $1.652(7)$ Å in (8) , corresponding to the length of the almost-covalent bond (1.55 Å) .¹⁰ Accordingly, a regular change of the Si atom position relative to the plane of the three equatorial C atoms is observed in the series (1) — (8) : the displacement of the Si atom from this plane towards the 0 atom ranges between 0.348(1) \AA in (1) and $-0.286(3) \AA$ in (8) (note the change of the sign) (see Figure 1 and Table 1).

The Pauling-Bürgi^{1,11} Si-O and Si-X bond orders vary from 0.85 and 0.15 in **(1)** to 0.18 and 0.82 in **(8),** being almost equal (~ 0.5) in the 'intermediate' chlorides **(3)—(6)** (Figure 1). The Si atom co-ordination changes in the series (1) — (8) from [4 + 1) *(i.e.* somewhat distorted tetrahedral with a secondary¹² Si \cdots X bond) in (1) and (2), through trigonal bipyramidal $[3 + 2]$ in (3) — (6) , and back to the distorted tetrahedral, but inverted, $[1 + 4]$ co-ordination in (7) and **(8)**.

Received, 6th July 1987; Corn. 947

References

- 1 H.-B. Burgi, *Angew. Chem.,* 1975, **27,** 460.
- 2 For reviews, see: **S.** N. Tandura, M. G. Voronkov, and N. W. Alekseev, *Top. Curr. Chem.,* 1986, **131,** 101; P. Hencsei and L. Parkanyi, 'Reviews on Silicon, Germanium, Tin and Lead

Compounds,' ed. M. Gielen, Vrije Universiteit te Brussel, 1985, vol. VIII, pp. 191-218.

- 3 V. A. Pestunovich, A. I. Albanov, M. F. Larin, **M.** G. Voronkov, E. P. Kramarova, and Yu. I. Baukov, *Zzv. AN SSSR, Ser. Khim.,* 1980, 2179.
- 4 K. D. Onan, A. T. McPhail, C. H. Yoder, and R. W. Hilliard, *J. Chem. SOC., Chem. Commun.,* 1978,209.
- *5* A. I. Albanov, Yu. I. Baukov, M. G. Voronkov, E. **P.** Kramarova, M. F. Larin, and V. A. Pestunovich, *Zn. Obsch. Khim.,* 1983, **53,** 246.
- 6 **Yu.** I. Baukov, **E.** P. Kramarova, G. I. Oleneva, and A. G. Shipov, VI All-Union Conference on Chemistry and Application of Organosilicon Compounds, Abstracts, Riga, 1986, 279.
- 7 N. Walker and D. Stuart, *Acta Crystallogr.,* 1983, **A39,** 158.
- 8 R. G. Gerr, A. I. Yanovsky, and Yu. T. Struchkov, *Kristallografia,* 1983, **28,** 1029.
- 9 Yu. E. Ovchinnikov, V. E. Shklover, Yu. T. Struchkov, M. V. Zelenskaya, L. **I.** Makarova, and A. A. Zhdanov, *Zh. Strukt. Khim.,* 1986, **27,** 125.
- 10 W. Airey, C. Gliedewell, D. W. H. Rankin, A. G. Robiette, G. M. Sheldrick, and D. W. J. Cruickshank, *Trans. Faraday SOC.,* 1970, **66,** 551.
- 11 L. Pauling, *J. Am. Ch. SOC.,* 1947, **69,** 542.
- 12 N. W. Alcock, 'Advances in Inorganic Chemistry and Radiochemistry,' Vol. 15, Academic Press, New York and London, 1972, pp. $1 - 8$.